
DEVS Execution Acceleration with Machine Learning

Hesham Saadawi

Government of Canada

Ottawa, ON

hsaadawi@hotmail.com

Gabriel Wainer

Carleton University

Ottawa, ON

Gabriel.Wainer@sce.carleton.ca

ABSTRACT

Discrete Event System Specification DEVS separates

modeling and simulation execution. Simulation execution is

done within a runtime environment that is often called a

DEVS simulator. This separation creates an opportunity to

incorporate new smart algorithms in the simulator to improve

simulation execution. We propose incorporating predictive

machine learning algorithms into the DEVS simulator in

order to cut simulation execution times significantly for

many simulation applications without compromising the

simulation accuracy. We introduce a specific learning

mechanism that can be embedded into the DEVS simulator

to incrementally build a predictive model that learns from

past simulations. We further look into issues related to the

predictive model selection, its prediction accuracy, its effect

on the overall simulation performance, and when to switch

between the predictive model and the simulation during an

execution.

Author Keywords

Discrete Event System Specification DEVS; Machine

Learning; Regression Models.

ACM Classification Keywords

I.6.1 SIMULATION AND MODELING (e.g. Model

Development).

1. INTRODUCTION

Computer Simulation has become an important tool for the

advancement of many disciplines in science and engineering.

As the complexity of these systems grows, the scale of the

computer simulations that represent them also grows.

High-performance computing HPC platforms that exploit the

parallel processing of hundreds or thousands of computing

nodes are becoming increasingly used to execute large-scale

simulations that otherwise would take prohibitively-huge

amount of time to execute on single processing machinery.

However, HPC platforms are expensive and need advanced

simulation code can execute in parallel fashion while

keeping any synchronization issues under control. Reducing

the computing power needed for large-scale simulations

would be an advantage, as this would reduce both the

computing cost and simulation execution time, hence

allowing for accelerated design cycles.

Traditional simulation code is usually written with

procedural programming languages such as FORTRAN, C,

C++, etc. A great effort is needed to optimize this code to

execute faster, and usually these optimizations done on one

platform do not necessarily work on another platform. This

makes code optimizations or other techniques to accelerate

simulation execution, as we will discuss in this paper, limited

to a particular model and simulation code and cannot be

applied easily to other models or simulation platforms.

Discrete Event System Specification DEVS on the other

hand, separates the model from its execution. The execution

is done by a DEVS simulator which is a runtime environment

that executes all types of DEVS models, and can execute on

different platforms. This creates an opportunity to implement

simulation optimization techniques into this common-for-all

runtime environment. Future scientists and engineers would

focus only on the modeling task at hand and leave simulation

execution optimization to the DEVS simulator. These

optimizations would execute on different platforms as the

need comes to scale the simulation, without affecting the

model structure of behavior.

In this paper, we introduce a technique to optimize DEVS

simulation using regression modeling from machine learning

(ML). With this technique, a predictive model is built

incrementally using information from past simulation

executions. This model would approximate the behavior of

complex components of a DEVS model, while executing

with much less computing resources. As a typical large-scale

DEVS model executes, many components have repetitive

computations represented as the same inputs, while in same

state. A great number of computations can be saved if the

component behavior is learned from past experiences and

then output is predicted instead of computed.

2. RELATED WORK

Recently, some researchers have used techniques of machine

learning to accelerate the simulation in particular scientific

and engineering domains. For example, in CPU instruction

set simulators [1], a machine learning algorithm was used to

build a regression model. This model was used during

simulation to predict coarse-grained simulation results, thus

saving computational time. However, this technique,

intuitively, consumed computation resources during the

learning phase and thus showed to be better used for long-

running simulations where this consumption can be offset by

savings in the simulation by using the built predictive model.

The authors report moderate simulator speedups of about

50% for this type of application, and with an error margin of

that is mostly below 5%. The authors implemented an

algorithm that decides when to switch between detailed

simulation and when to use the predictive model.

In the domain of materials science, some researchers used

machine-learning algorithms to incrementally build a

predictive model to reduce complex Quantum mechanics-

based ab initio molecular dynamics (MD) calculations

during the simulation phase [2]. Once enough training data

is obtained from the simulation, an algorithm can decide if

using the predictive model is accurately sufficient or it needs

to run the simulation. This saves the need to do many

complex and repetitive calculations during the simulation.

Once the machine learning model is built from the training

set, the authors note that a prediction using this model is

faster than MD calculations by an order of 106.

3. BACKGROUND

3.1. DEVS

We define here the classical DEVS [5]. First we define

DEVS atomic model. The DEVS Atomic Model is defined

as:

AMTC = < X, Y, S, int, ext ,  ta>

- X : The set of external inputs.

 - :Y Set of external outputs.

- S: set of system states.

- int: S → S is the internal transition function.

− ext: T × X → S with T={(s,e)| s 0≤e≤ta(s), e  ℝ0,+∞}

is the external transition function (e is the time elapsed since

the last transition, which takes a positive real value).

- : S → Y  is the output function.

- ta: S → ℝ0,+∞ is the time advance function that maps

each state to a real number.

Coupled DEVS models are composed of atomic or other

coupled DEVS models:

SelectyCxCiMDYXCM ,,},{,,,

X: Set of external input events.

Y: Set of external output events.

D: Finite index of sub-components.

{Mi}: The set of sub-components. A sub-component may

be an atomic or coupled. Di  is the index of the

component.

Cx: Set of input couplings.

Cy: Set of output couplings.

Select: 2D →D is a tie-breaking function, which defines

how to select an event from asset of simultaneous events.

A coupled DEVS model M can be simulated with an

equivalent atomic DEVS model, whose behavior is defined

as follows [3]:

M = < X,Y,S,s0,δext,δint,λ,ta >

• X and Y are the input and output event sets,

respectively. X is the set of all input events accepted and Y

is the set of all output events generated by coupled model M.

• iVDiS = is the model state. It is expressed as the

Cartesian product of all component states, where
iV is the

total state for component i,

 )](,0[,|),(istaeitiSiseitisiV = . Here, eit denotes the

elapsed time in state is of component i, and iS is the set of

states of component i.

•
i

vDis 00 = is the initial system state, with

)0,0(0 is
i

v = is the initial state of component Di  .

• →Sta : is the time advance function. It is calculated

for the global state Ss  of the coupled model as the

minimum time remaining for any state among all

components, formally:  Dieitistasta −= |))((min)(

where ()),...,(..., ietiss = is the global total state of coupled

model at some point in time, is is the state of component i,

iet is elapsed time in that state.

• SVX
ext

→: is the external transition function for

the coupled model. Where V is total state of the coupled

model:  )](,0[,|),(staetSsetsV = .

• SS →:int is the internal transition function of the

coupled model.

YS →: is the output function of the coupled model.

3.2. MACHINE LEARNING

Machine learning techniques and algorithms goal is to

identify patterns from data. These techniques are usually

divided into two categories, supervised and unsupervised

learning.

In supervised learning, the data is split into two or more sets,

a training set and a test set. The algorithm builds a model

using the training set, and then tests the accuracy of it against

the test set. If accuracy found to be within acceptable limits,

the model would then be used to predict new output values

from new inputs. Usually these models are best used as

interpolative instead of extrapolative, i.e. predict data points

that lie in the range of training set data to have reasonable

accuracy in the predicted output.

In unsupervised techniques, the algorithm deals with all the

data and tries to identify groupings in the data to help in the

task of data classification.

For our purpose in this paper, we are interested with the

supervised learning algorithms as the DEVS simulator

execution would provide us with a training and a test sets

that are known to be correct.

4. EXPRESSING DEVS COUPLED MODELS AS A
PREDICTIVE MODEL

It is a well-known fact as shown in [5] that each DEVS

coupled model has an equivalent atomic model behavior.

This behavior can be deterministic or non-deterministic

depending on the functions defining the behavior of the

model. We consider here only deterministic DEVS models.

Further, we limit the discussion below on DEVS models that

represent continuous systems as described in [6][7]. In this

case, the behavior of a coupled or atomic DEVS model can

be approximated with a predictive model. In other words, the

equivalent transition functions are approximated with a

predictive model. Let’s look at the observed behavior of a

DEVS model when receiving an external input X and

producing an output Y after some time t:

ext (S1,e,X) = (S2,)

Where S1 is the current model state, e is the elapsed time

in that state,  = ta(S2) the time advance value of state S2.

(S2) = Y

int (S2) = (S3)

Combining these functions produces:

Y = f1(S1,e,X) Eq. 1

S3 = f2(S1,e,X) Eq. 2

 = f3(S1,e,X) Eq. 3

f1 and f3 express the coupled model behavior as a

relationship between the model input X, its state (Si,e) and

observed output Y that is observed at a time instant of 

EXPLAIN BETTER . These two functions are equivalent to

ext and . f2 represents the model internal transition function.

Figure 1 shows a general DEVS coupled model C that

composes of D number of DEVS sub models (atomic or

coupled) and has an input vector X and produces and output

vector Y. The total state of this model can be represented as

a vector of the states of all components

S = (s1,s1,….sl)

Each of subcomponent state si can be generalized to have a

vector of real variables si = (vi1,vi2,…) describing the

subcomponent state. Therefore, the total state of model C at

any instance in time can be expressed as a vector of all real

variables representing subcomponent states

S = (s1,….sn), where n = ∑ |𝑠𝑖|𝑖=𝐷
𝑖=1

Therefore, the model state can be generalized as a vector of

n real numberS giving S  ℝn. External inputs can also be

generalized as a vector of one or more real numbers X  ℝk.

External outputs can also be generalized as vector of one or

more of real numbers Y  ℝm. Formally,

S = (v1, v2, v3,…, vn), n > 0 , vi  ℝ, 1 ≤ i ≤ n

X = (x1,x2,…,xk), k > 0, , xi  ℝ, 1 ≤ i ≤ k

Y = (y1,y2,…,ym), m > 0 , yi  ℝ, 1 ≤ i ≤ m

We propose using machine learning techniques to build an

approximate equivalent model that would help predicting the

model outputs as defined by Eq. 1, Eq. 2, and Eq. 3. The

advantage of doing this is shown in [1][2] that it can reduce

simulation time significantly for complex coupled models.

This is because of two reasons; first, a predictive model that

consumes much less computations to produce an equivalent

output can replace a computation-intensive DEVS model.

Secondly, it is common in engineering and scientific models

to use many instances of a component Mx to build a larger

model. If this component Mx happens to consume relatively

a lot of computing resources, it would be beneficial to replace

it with an equivalent predictive model. Think for example

about a transistor model in VLSI simulation. In [8], the

authors used three-dimensional statistical numerical

simulations to study a new design of a MOSFET transistor.

This simulation is described as atomistic scale as it takes into

account quantum behavior of electrons and holes. The

resulting characteristic behavior of the transistor was

obtained and plotted from the study. If this transistor were

used in a VLSI, it would be a good candidate for building an

equivalent predictive model for its characteristic curve

instead of repeating expensive computations for each

instance in a large VLSI model.

Further, once built, this predictive model is a characteristic

behavior of the DEVS model. Therefore, it would be good to

store it with the model for future simulations as long as the

model definition does not change.

Doing so would help scale the DEVS simulation to handle

system-of-systems as any subsystem behavior can be

harvested during the simulation and then repetitive

computations in that subsystem would be answered from the

predictive model in a faster time and with fewer

computations.

Choosing a predictive modeling technique to approximate f1,

f2 and f3 depends on several factors:

a. Efficient: as the model would be built during

simulation time.

C

M1

M2

M3

MD

X

Y

Figure 1: DEVS Coupled Model

M3

b. Incremental: it can accept new points added to the

model with least computations.

c. First assumption is working with real numbers

inputs and outputs ????.

d. Can work reasonably well with non-linear functions

(Unknown functions that arise in solving physical

ODE).

e. There is a way to give a ceiling of error for this

model for new data

f. Can automatically correct/optimize for the least

error by selecting higher orders of input variables.

Assuming all input variables are contributing to the

output.

Generally speaking, there are two predictive models of

machine learning that can satisfy most of these factors,

namely statistical regression, and artificial neural networks.

4.1. STATISTICAL REGRESSION MODELING

We introduce regression modeling, a simple method to build

predictive continuous models from a set of known data [4].

Regression is used to predict the value of an output variable

y = f(x) based on the input of one or more predictor input

variables x = (x1, . . . ,xN). The function f(x) can be a simple

linear function or non-linear. If f(x) is linear, the regression

model is expressed as:

 �̂� = 𝜃1 + ∑ 𝜃𝑖𝑥𝑖 + 𝜀𝑖=𝑁+1
𝑖=2

Where �̂� is the predicted value, (θ0, θ1, …, θN) are model

weights, and ε = y- �̂� is the prediction error. This error is the

difference between the actual y value and the estimated value

 �̂� obtained from the model. The model is built from a

training set of m data points [(y1,x11,x12,…,x1N),..,

(ym,xm1,xm2,…,xmN)]. Using least squares method, the

weights of the model are calculated as follows in a matrix

form

Θ = (XTX)-1XTY Eq. 4

Where X=[
1
⋮
1

𝑥11 ⋯ 𝑥1𝑁

⋮ ⋱ ⋮
𝑥𝑚1 ⋯ 𝑥𝑚𝑁

], Θ =[

𝜃1

𝜃2

⋮
𝜃𝑁

] , Y=[

𝑦1
𝑦2

⋮
𝑦𝑚

],

XT is the transpose of matrix X, x11 is the element of first data

point in the training data set that correspond to the variable

x1, and the subscript -1 indicates the matrix inverse.

Once, we have the regression model, statistics estimates a

variance of the predicted value from the actual value as

 =
∑ (𝑦𝑖−�̂�𝑖)𝑖=𝑚

𝑖=1

𝑚−2
 Eq. 5

In addition, the standard error of regression or the standard

deviation would equal to. With an assumption of errors to

follow a normal distribution, an estimated value �̂� is

considered the mean of the distribution. Therefore, we can

get an estimate of how far the actual y value from the

predicted mean for a 95% confidence interval as

(y ̂- 1.96) ≥ y ≥ (y ̂ + 1.96) Eq. 6

This model would approximate a continuous function with a

linear one. However, if the approximated continuous

function deviates significantly from a linear model, f(x) can

take higher orders of x to build quadratic or cubic predictor

functions that can better approximate the continuous

function, i.e. average error is further minimized. Other non-

linear forms of f(x) also exist for more complicated models.

However, the model building would be more

computationally demanding in this case.

The advantage of using regression models is that they are

simple to construct and there are efficient incremental

algorithms that can build the model incrementally as new

data points arrive [1][9].

4.2. PROPOSED DEVS SIMULATOR PREDICTIVE
MODELING

We propose an algorithm to be used in the simulator to aid

in using predictive models in the simulation. Key ideas of

this algorithm are:

a. Decide which model is a good candidate to be

approximated with a predictive model: Apparently,

models that are influenced and can influence a

simulation are these with inputs and outputs.

Further, models with significant internal

computations and are involved in many model

interactions are good candidates. We will elaborate

on this criterion later in this paper.

b. Collect data for the chosen models: once a

candidate model is identified, a data collection

phase is begun. With enough data points, the

predictive model is built. For regression models,

usually the number of data points need to exceed the

number of variables for the model construction to

be solvable.

c. Decide when an accurate-enough predictive model

is built and is ready for use: Eq. 5 shows that the

variance of a predictive regression model can be

decreased by including more m data points in the

model construction. This in turn would reduce

estimation error interval as defined in Eq. 6. It is

also known for regression models that it is best to

be used as interpolative, i.e. to predict new data

points with inputs that lie in the range of the model

training set.

d. Revert back to simulation execution if accuracy

falls below accepted margin: this would happen if

either not having enough data points, or an input

comes to the model that is outside the range of

inputs of the model training set. In this case, a new

data point (input/state/output) should be added

incrementally to the predictive model and its

weights are updated accordingly. Another possible

reason of reduced accuracy is if the chosen DEVS

model behavior is nonlinear. In this case, a

nonlinear predictive model either to be built with

acceptable accuracy, or revert to the simulation for

accurate results.

4.3. Estimating criterion for computational savings

As mentioned above in section 4.2, point a, the DEVS

simulator would need a criterion to select a candidate DEVS

model for building a predictive model. Ideally, this would

save computations either in the current simulation run or

future simulations where this DEVS component is taking

part. Formally

CP. Model ≤ CDEVS Eq. 7

Where:

CP. Model is the number of computations to build a predictive

model.

CDEVS : is the number of computations done by the DEVS

model. As an approximation, this number is approximately

the number of transitions done by a DEVS model to produce

an output after receiving an external input.

Eq. 4 is used to build a predictive linear regression model. In

that equation, the dominating term in determining the

number of computations is the calculation of the matrix

inverse. If we have an m×m matrix, then number of

computation to calculate its inverse is approximately 2m3/ 3

operations [10]. Therefore, the above criterion can be

expressed as

2m3/ 3 ≤ CDEVS

The number of data points m to be observed and sampled

during a simulation execution is based on the desired

accuracy, which is expressed as a specific standard error for

a desired confidence interval as in Eq. 6. This number would

determine the expected number of computations to build a

predictive model and thus can be a guide to select a DEVS

model with comparable computations or more. Once a good

predictive model for a DEVS component is built for a given

accuracy, it is expected the predictive model would not

change unless the DEVS component changes. Therefore, it

would be beneficial to save this predictive model with the

DEVS component definition to be used in future simulations

to save even more computational resources. In this case,

number of DEVS transitions in Eq. 7 would be total

transitions during one or more simulation runs.

5. CONCLUSION AND FUTURE RESEARCH

In this paper, we proposed the use of machine learning

techniques to build predictive models as replacements to

computation-intensive DEVS components. Doing so, would

accelerate the simulation of complex system-of-systems

without sacrificing much accuracy. Some experimentation

with this concept was implemented recently in the general

simulation community, but its wide application to codes of

simulations would be difficult without the concept of a model

and a simulator.

The application of our proposed approach should be an

integral part of the DEVS simulator as DEVS separates the

model definition from its simulator. This would be a clear

advantage when modeling scientific and engineering systems

with DEVS.

We showed one method of machine learning, simple

regression, that may be used to efficiently and incrementally

build predictive models. Using this method, we showed a

way to estimate the prediction error, which can be acceptable

when confined to the range of error induced by the

simulation approximations or quantization.

As the DEVS simulator does not know priori the expected

behavior function of a component, or the number of state

variables, it would be ideal to have other techniques available

to build more complex predictive models. Regression models

usually are not accurate enough if the function to

approximate is non-linear above quadratic or cubic, or the

number of variables is high. In this case, other ML

techniques would be necessary. One of these techniques that

are used to build complex non-linear predictive models is

Artificial Neural Networks ANN. ANN can be trained with

sample data, the training set, to build a predictive model that

can be used to predict output value from the inputs. The

drawback of this technique is its intensive computations and

long training time. We plan to explore this option in future

research.

In Future research, we also plan to implement these

algorithms into a DEVS simulator and execute a benchmark

system model to fine-tune our methods.

ACKNOWLEDGMENTS

…

REFERENCES

[1] Powell, Daniel Christopher, and Björn Franke. "Using

continuous statistical machine learning to enable high-

speed performance prediction in hybrid instruction-

/cycle-accurate instruction set simulators." Proceedings

of the 7th IEEE/ACM international conference on

Hardware/software codesign and system synthesis.

ACM, 2009.

[2] Botu, Venkatesh, and Rampi Ramprasad. "Adaptive

machine learning framework to accelerate ab initio

molecular dynamics." International Journal of

Quantum Chemistry (2014).

[3] Wikipedia. DEVS behavior.

http://en.wikipedia.org/wiki/Behavior_of_Coupled_DE

VS. [Accessed: Dec. 2015].

[4] Weisberg, S. Applied Linear Regression, third edition,

Hoboken NJ: Wiley (2005).

[5] BP Zeigler, H. Praehofer, T.G. Kim (2000) Theory of

modeling and simulation, 2nd edn. Academic Press,

New York.

[6] Francois E. Cellier and Ernesto Kofman (2006).

Continuous System Simulation (first ed.). Springer.

ISBN 978-0-387-26102-7

[7] James Nutaro (2010). Building Software for Simulation:

Theory, Algorithms, and Applications in C++ (first ed.).

Wiley. ISBN 0-470-41469-3

[8] Roy, G.; Brown, A.R.; Adamu-Lema, F.; Roy, S.;

Asenov, A., "Simulation Study of Individual and

Combined Sources of Intrinsic Parameter Fluctuations

in Conventional Nano-MOSFETs," in Electron Devices,

IEEE Transactions on , vol.53, no.12, pp.3063-3070,

Dec. 2006.

[9] M. J. Orr. Introduction to radial basis function networks.

Technical report, Centre for Cognitive Science,

University of Edinburgh, 1996.

[10] Wikipedia. Gaussian elimination.

https://en.wikipedia.org/wiki/Gaussian_elimination#Fi

nding_the_inverse_of_a_matrix. [Accessed Dec. 2015]

https://en.wikipedia.org/wiki/Gaussian_elimination#Finding_the_inverse_of_a_matrix
https://en.wikipedia.org/wiki/Gaussian_elimination#Finding_the_inverse_of_a_matrix

