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ABSTRACT 

Discrete Event System Specification DEVS separates 

modeling and simulation execution. Simulation execution is 

done within a runtime environment that is often called a 

DEVS simulator. This separation creates an opportunity to 

incorporate new smart algorithms in the simulator to improve 

simulation execution. We propose incorporating predictive 

machine learning algorithms into the DEVS simulator in 

order to cut simulation execution times significantly for 

many simulation applications without compromising the 

simulation accuracy. We introduce a specific learning 

mechanism that can be embedded into the DEVS simulator 

to incrementally build a predictive model that learns from 

past simulations. We further look into issues related to the 

predictive model selection, its prediction accuracy, its effect 

on the overall simulation performance, and when to switch 

between the predictive model and the simulation during an 

execution. 
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1. INTRODUCTION 

Computer Simulation has become an important tool for the 

advancement of many disciplines in science and engineering. 

As the complexity of these systems grows, the scale of the 

computer simulations that represent them also grows. 

High-performance computing HPC platforms that exploit the 

parallel processing of hundreds or thousands of computing 

nodes are becoming increasingly used to execute large-scale 

simulations that otherwise would take prohibitively-huge 

amount of time to execute on single processing machinery. 

However, HPC platforms are expensive and need advanced 

simulation code can execute in parallel fashion while 

keeping any synchronization issues under control. Reducing 

the computing power needed for large-scale simulations 

would be an advantage, as this would reduce both the 

computing cost and simulation execution time, hence 

allowing for accelerated design cycles. 

Traditional simulation code is usually written with 

procedural programming languages such as FORTRAN, C, 

C++, etc. A great effort is needed to optimize this code to 

execute faster, and usually these optimizations done on one 

platform do not necessarily work on another platform. This 

makes code optimizations or other techniques to accelerate 

simulation execution, as we will discuss in this paper, limited 

to a particular model and simulation code and cannot be 

applied easily to other models or simulation platforms. 

Discrete Event System Specification DEVS on the other 

hand, separates the model from its execution. The execution 

is done by a DEVS simulator which is a runtime environment 

that executes all types of DEVS models, and can execute on 

different platforms. This creates an opportunity to implement 

simulation optimization techniques into this common-for-all 

runtime environment. Future scientists and engineers would 

focus only on the modeling task at hand and leave simulation 

execution optimization to the DEVS simulator. These 

optimizations would execute on different platforms as the 

need comes to scale the simulation, without affecting the 

model structure of behavior. 

In this paper, we introduce a technique to optimize DEVS 

simulation using regression modeling from machine learning 

(ML). With this technique, a predictive model is built 

incrementally using information from past simulation 

executions. This model would approximate the behavior of 

complex components of a DEVS model, while executing 

with much less computing resources. As a typical large-scale 

DEVS model executes, many components have repetitive 

computations represented as the same inputs, while in same 

state. A great number of computations can be saved if the 

component behavior is learned from past experiences and 

then output is predicted instead of computed. 

 

2. RELATED WORK 

Recently, some researchers have used techniques of machine 

learning to accelerate the simulation in particular scientific 

and engineering domains. For example, in CPU instruction 

set simulators [1], a machine learning algorithm was used to 

build a regression model. This model was used during 

simulation to predict coarse-grained simulation results, thus 

saving computational time. However, this technique, 

intuitively, consumed computation resources during the 

learning phase and thus showed to be better used for long-

running simulations where this consumption can be offset by 

savings in the simulation by using the built predictive model. 

The authors report moderate simulator speedups of about 



50% for this type of application, and with an error margin of 

that is mostly below 5%. The authors implemented an 

algorithm that decides when to switch between detailed 

simulation and when to use the predictive model. 

In the domain of materials science, some researchers used 

machine-learning algorithms to incrementally build a 

predictive model to reduce complex Quantum mechanics-

based ab initio molecular dynamics (MD) calculations 

during the simulation phase [2]. Once enough training data 

is obtained from the simulation, an algorithm can decide if 

using the predictive model is accurately sufficient or it needs 

to run the simulation. This saves the need to do many 

complex and repetitive calculations during the simulation. 

Once the machine learning model is built from the training 

set, the authors note that a prediction using this model is 

faster than MD calculations by an order of 106. 

 

3. BACKGROUND 

3.1. DEVS 

We define here the classical DEVS [5]. First we define 

DEVS atomic model. The DEVS Atomic Model is defined 

as: 

AMTC = < X, Y, S, int, ext ,  ta> 

- X : The set of external inputs. 

  - :Y  Set of external outputs. 

- S: set of system states.  

- int: S → S is the internal transition function. 

− ext: T × X → S with T={(s,e)| s 0≤e≤ta(s), e  ℝ0,+∞} 

is the external transition function (e is the time elapsed since 

the last transition, which takes a positive real value). 

- : S → Y  is the output function. 

- ta: S → ℝ0,+∞ is the time advance function that maps 

each state to a real number. 

Coupled DEVS models are composed of atomic or other 

coupled DEVS models: 

SelectyCxCiMDYXCM ,,},{,,,  

X: Set of external input events. 

Y: Set of external output events. 

D: Finite index of sub-components. 

{Mi}: The set of sub-components. A sub-component may 

be an atomic or coupled. Di   is the index of the 

component.   

Cx: Set of input couplings. 

Cy: Set of output couplings. 

Select: 2D →D is a tie-breaking function, which defines 

how to select an event from asset of simultaneous events. 

A coupled DEVS model M can be simulated with an 

equivalent atomic DEVS model, whose behavior is defined 

as follows [3]: 

M = < X,Y,S,s0,δext,δint,λ,ta > 

• X and Y are the input and output event sets, 

respectively. X is the set of all input events accepted and Y 

is the set of all output events generated by coupled model M. 

• iVDiS =  is the model state. It is expressed as the 

Cartesian product of all component states, where 
iV  is the 

total state for component i, 

 )](,0[,|),( istaeitiSiseitisiV = . Here, eit denotes the 

elapsed time in state is  of component i, and iS  is the set of 

states of component i. 

• 
i

vDis 00 = is the initial system state, with 

)0,0(0 is
i

v =  is the initial state of component Di  . 

• →Sta : is the time advance function. It is calculated 

for the global state Ss  of the coupled model as the 

minimum time remaining for any state among all 

components, formally:  Dieitistasta −= |))((min)(  

where ( )),...,(..., ietiss =  is the global total state of coupled 

model at some point in time, is  is the state of component i, 

iet  is elapsed time in that state. 

• SVX
ext

→:  is the external transition function for 

the coupled model. Where V is total state of the coupled 

model:  )](,0[,|),( staetSsetsV = . 

• SS →:int  is the internal transition function of the 

coupled model. 

YS →:  is the output function of the coupled model.  

3.2. MACHINE LEARNING 

Machine learning techniques and algorithms goal is to 

identify patterns from data. These techniques are usually 

divided into two categories, supervised and unsupervised 

learning.  

In supervised learning, the data is split into two or more sets, 

a training set and a test set. The algorithm builds a model 

using the training set, and then tests the accuracy of it against 

the test set. If accuracy found to be within acceptable limits, 

the model would then be used to predict new output values 

from new inputs. Usually these models are best used as 

interpolative instead of extrapolative, i.e. predict data points 

that lie in the range of training set data to have reasonable 

accuracy in the predicted output. 

In unsupervised techniques, the algorithm deals with all the 

data and tries to identify groupings in the data to help in the 

task of data classification. 

For our purpose in this paper, we are interested with the 

supervised learning algorithms as the DEVS simulator 

execution would provide us with a training and a test sets 

that are known to be correct. 

 



4. EXPRESSING DEVS COUPLED MODELS AS A  
PREDICTIVE MODEL 

It is a well-known fact as shown in [5] that each DEVS 

coupled model has an equivalent atomic model behavior. 

This behavior can be deterministic or non-deterministic 

depending on the functions defining the behavior of the 

model. We consider here only deterministic DEVS models. 

Further, we limit the discussion below on DEVS models that 

represent continuous systems as described in [6][7]. In this 

case, the behavior of a coupled or atomic DEVS model can 

be approximated with a predictive model. In other words, the 

equivalent transition functions are approximated with a 

predictive model. Let’s look at the observed behavior of a 

DEVS model when receiving an external input X and 

producing an output Y after some time t: 

ext (S1,e,X) = (S2,) 

Where S1 is the current model state, e is the elapsed time 

in that state,    = ta(S2) the time advance value of state S2. 

( S2) = Y 

int (S2) = (S3) 

Combining these functions produces: 

Y = f1(S1,e,X) Eq. 1 

S3 = f2(S1,e,X) Eq. 2 

 = f3(S1,e,X) Eq. 3 

f1 and f3 express the coupled model behavior as a 

relationship between the model input X, its state (Si,e) and 

observed output Y that is observed at a time instant of  

EXPLAIN BETTER . These two functions are equivalent to 

ext and . f2 represents the model internal transition function. 

 

 

 

 

 

 

Figure 1 shows a general DEVS coupled model C that 

composes of D number of DEVS sub models (atomic or 

coupled) and has an input vector X and produces and output 

vector Y. The total state of this model can be represented as 

a vector of the states of all components 

S = (s1,s1,….sl) 

Each of subcomponent state si can be generalized to have a 

vector of real variables si = (vi1,vi2,…) describing the 

subcomponent state. Therefore, the total state of model C at 

any instance in time can be expressed as a vector of all real 

variables representing subcomponent states 

S = (s1,….sn), where n = ∑ |𝑠𝑖|𝑖=𝐷
𝑖=1  

Therefore, the model state can be generalized as a vector of 

n real numberS giving S  ℝn. External inputs can also be 

generalized as a vector of one or more real numbers X  ℝk. 

External outputs can also be generalized as vector of one or 

more of real numbers Y  ℝm. Formally, 

S = (v1, v2, v3,…, vn),  n > 0 , vi  ℝ, 1 ≤ i ≤ n 

X = (x1,x2,…,xk), k > 0, , xi  ℝ, 1 ≤ i ≤ k 

Y  = (y1,y2,…,ym), m > 0 ,  yi  ℝ, 1 ≤ i ≤ m 

We propose using machine learning techniques to build an 

approximate equivalent model that would help predicting the 

model outputs as defined by Eq. 1, Eq. 2, and Eq. 3. The 

advantage of doing this is shown in [1][2] that it can reduce 

simulation time significantly for complex coupled models. 

This is because of two reasons; first, a predictive model that 

consumes much less computations to produce an equivalent 

output can replace a computation-intensive DEVS model. 

Secondly, it is common in engineering and scientific models 

to use many instances of a component Mx to build a larger 

model. If this component Mx happens to consume relatively 

a lot of computing resources, it would be beneficial to replace 

it with an equivalent predictive model. Think for example 

about a transistor model in VLSI simulation. In [8], the 

authors used three-dimensional statistical numerical 

simulations to study a new design of a MOSFET transistor. 

This simulation is described as atomistic scale as it takes into 

account quantum behavior of electrons and holes. The 

resulting characteristic behavior of the transistor was 

obtained and plotted from the study. If this transistor were 

used in a VLSI, it would be a good candidate for building an 

equivalent predictive model for its characteristic curve 

instead of repeating expensive computations for each 

instance in a large VLSI model. 

Further, once built, this predictive model is a characteristic 

behavior of the DEVS model. Therefore, it would be good to 

store it with the model for future simulations as long as the 

model definition does not change. 

Doing so would help scale the DEVS simulation to handle 

system-of-systems as any subsystem behavior can be 

harvested during the simulation and then repetitive 

computations in that subsystem would be answered from the 

predictive model in a faster time and with fewer 

computations.  

Choosing a predictive modeling technique to approximate f1, 

f2 and f3 depends on several factors: 

a. Efficient: as the model would be built during 

simulation time. 
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Figure 1: DEVS Coupled Model 

M3 



b. Incremental: it can accept new points added to the 

model with least computations. 

c. First assumption is working with real numbers 

inputs and outputs ????. 

d. Can work reasonably well with non-linear functions 

(Unknown functions that arise in solving physical 

ODE). 

e. There is a way to give a ceiling of error for this 

model for new data 

f. Can automatically correct/optimize for the least 

error by selecting higher orders of input variables. 

Assuming all input variables are contributing to the 

output. 

Generally speaking, there are two predictive models of 

machine learning that can satisfy most of these factors, 

namely statistical regression, and artificial neural networks. 

 

4.1. STATISTICAL REGRESSION MODELING 

We introduce regression modeling, a simple method to build 

predictive continuous models from a set of known data [4]. 

Regression is used to predict the value of an output variable 

y = f(x) based on the input of one or more predictor input 

variables x = (x1, . . . ,xN). The function f(x) can be a simple 

linear function or non-linear. If f(x) is linear, the regression 

model is expressed as: 

  �̂� =  𝜃1 + ∑ 𝜃𝑖𝑥𝑖 + 𝜀𝑖=𝑁+1
𝑖=2  

Where  �̂� is the predicted value, (θ0, θ1, …, θN) are model 

weights, and ε = y- �̂� is the prediction error. This error is the 

difference between the actual y value and the estimated value 

 �̂� obtained from the model. The model is built from a 

training set of m data points [(y1,x11,x12,…,x1N),.., 

(ym,xm1,xm2,…,xmN)]. Using least squares method, the 

weights of the model are calculated as follows in a matrix 

form 

Θ = (XTX)-1XTY Eq. 4 

 

Where X=[ 
1
⋮
1

  

𝑥11 ⋯ 𝑥1𝑁

⋮ ⋱ ⋮
𝑥𝑚1 ⋯ 𝑥𝑚𝑁

], Θ =[

𝜃1

𝜃2

⋮
𝜃𝑁

]  , Y=[

𝑦1
𝑦2

⋮
𝑦𝑚

], 

XT is the transpose of matrix X, x11 is the element of first data 

point in the training data set that correspond to the variable 

x1, and the subscript -1 indicates the matrix inverse. 

Once, we have the regression model, statistics estimates a 

variance of the predicted value from the actual value as 

 = 
∑ (𝑦𝑖−�̂�𝑖)𝑖=𝑚

𝑖=1

𝑚−2
 Eq. 5 

In addition, the standard error of regression or the standard 

deviation would equal to. With an assumption of errors to 

follow a normal distribution, an estimated value �̂� is 

considered the mean of the distribution. Therefore, we can 

get an estimate of how far the actual y value from the 

predicted mean for a 95% confidence interval as 

(y ̂- 1.96) ≥  y  ≥ (y ̂ +  1.96) Eq. 6 

This model would approximate a continuous function with a 

linear one. However, if the approximated continuous 

function deviates significantly from a linear model, f(x) can 

take higher orders of x to build quadratic or cubic predictor 

functions that can better approximate the continuous 

function, i.e. average error is further minimized. Other non-

linear forms of f(x) also exist for more complicated models. 

However, the model building would be more 

computationally demanding in this case. 

The advantage of using regression models is that they are 

simple to construct and there are efficient incremental 

algorithms that can build the model incrementally as new 

data points arrive [1][9]. 

 

4.2. PROPOSED DEVS SIMULATOR PREDICTIVE 
MODELING 

We propose an algorithm to be used in the simulator to aid 

in using predictive models in the simulation. Key ideas of 

this algorithm are: 

a. Decide which model is a good candidate to be 

approximated with a predictive model: Apparently, 

models that are influenced and can influence a 

simulation are these with inputs and outputs. 

Further, models with significant internal 

computations and are involved in many model 

interactions are good candidates. We will elaborate 

on this criterion later in this paper. 

b. Collect data for the chosen models: once a 

candidate model is identified, a data collection 

phase is begun. With enough data points, the 

predictive model is built. For regression models, 

usually the number of data points need to exceed the 

number of variables for the model construction to 

be solvable. 

c. Decide when an accurate-enough predictive model 

is built and is ready for use: Eq. 5 shows that the 

variance of a predictive regression model can be 

decreased by including more m data points in the 

model construction. This in turn would reduce 

estimation error interval as defined in Eq. 6. It is 

also known for regression models that it is best to 

be used as interpolative, i.e. to predict new data 

points with inputs that lie in the range of the model 

training set. 

d. Revert back to simulation execution if accuracy 

falls below accepted margin: this would happen if 

either not having enough data points, or an input 



comes to the model that is outside the range of 

inputs of the model training set. In this case, a new 

data point (input/state/output) should be added 

incrementally to the predictive model and its 

weights are updated accordingly. Another possible 

reason of reduced accuracy is if the chosen DEVS 

model behavior is nonlinear. In this case, a 

nonlinear predictive model either to be built with 

acceptable accuracy, or revert to the simulation for 

accurate results. 

4.3. Estimating criterion for computational savings 

As mentioned above in section 4.2, point a, the DEVS 

simulator would need a criterion to select a candidate DEVS 

model for building a predictive model. Ideally, this would 

save computations either in the current simulation run or 

future simulations where this DEVS component is taking 

part. Formally  

CP. Model ≤  CDEVS Eq. 7 

Where:  

CP. Model is the number of computations to build a predictive 

model. 

CDEVS : is the number of computations done by the DEVS 

model. As an approximation, this number is approximately 

the number of transitions done by a DEVS model to produce 

an output after receiving an external input. 

Eq. 4 is used to build a predictive linear regression model. In 

that equation, the dominating term in determining the 

number of computations is the calculation of the matrix 

inverse. If we have an m×m matrix, then number of 

computation to calculate its inverse is approximately 2m3/ 3 

operations [10]. Therefore, the above criterion can be 

expressed as 

2m3/ 3 ≤ CDEVS 

The number of data points m to be observed and sampled 

during a simulation execution is based on the desired 

accuracy, which is expressed as a specific standard error for 

a desired confidence interval as in Eq. 6. This number would 

determine the expected number of computations to build a 

predictive model and thus can be a guide to select a DEVS 

model with comparable computations or more. Once a good 

predictive model for a DEVS component is built for a given 

accuracy, it is expected the predictive model would not 

change unless the DEVS component changes. Therefore, it 

would be beneficial to save this predictive model with the 

DEVS component definition to be used in future simulations 

to save even more computational resources. In this case, 

number of DEVS transitions in Eq. 7 would be total 

transitions during one or more simulation runs. 

 

5. CONCLUSION AND FUTURE RESEARCH 

In this paper, we proposed the use of machine learning 

techniques to build predictive models as replacements to 

computation-intensive DEVS components. Doing so, would 

accelerate the simulation of complex system-of-systems 

without sacrificing much accuracy. Some experimentation 

with this concept was implemented recently in the general 

simulation community, but its wide application to codes of 

simulations would be difficult without the concept of a model 

and a simulator. 

The application of our proposed approach should be an 

integral part of the DEVS simulator as DEVS separates the 

model definition from its simulator. This would be a clear 

advantage when modeling scientific and engineering systems 

with DEVS.  

We showed one method of machine learning, simple 

regression, that may be used to efficiently and incrementally 

build predictive models. Using this method, we showed a 

way to estimate the prediction error, which can be acceptable 

when confined to the range of error induced by the 

simulation approximations or quantization.  

As the DEVS simulator does not know priori the expected 

behavior function of a component, or the number of state 

variables, it would be ideal to have other techniques available 

to build more complex predictive models. Regression models 

usually are not accurate enough if the function to 

approximate is non-linear above quadratic or cubic, or the 

number of variables is high. In this case, other ML 

techniques would be necessary. One of these techniques that 

are used to build complex non-linear predictive models is 

Artificial Neural Networks ANN. ANN can be trained with 

sample data, the training set, to build a predictive model that 

can be used to predict output value from the inputs. The 

drawback of this technique is its intensive computations and 

long training time. We plan to explore this option in future 

research. 

In Future research, we also plan to implement these 

algorithms into a DEVS simulator and execute a benchmark 

system model to fine-tune our methods. 
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